A role for Asp75 in domain interactions in the Bacillus subtilis response regulator Spo0A.
نویسندگان
چکیده
Spo0A is a two-domain response regulator required for sporulation initiation in Bacillus subtilis. Studies on response regulators have focused on the activity of each domain, but very little is known about the mechanism by which the regulatory domain inhibits the activator domain. In this study, we created a single amino acid substitution in the regulatory domain, D75S, which resulted in a dramatic decrease in sporulation in vivo. In vitro studies with the purified Spo0AD75S protein demonstrated that phosphorylation and DNA binding were comparable with wild type Spo0A. However, the mutant was unable to stimulate transcription by final sigma(A)-RNA polymerase from the Spo0A-dependent spoIIG operon promoter. We suggest that the amino acid Asp(75) and/or the region within which it resides, the alpha3-beta4 loop, are involved in the inhibitory interaction between the regulatory and activator domains of Spo0A.
منابع مشابه
Transcriptional activation of the Bacillus subtilis spoIIG promoter by the response regulator Spo0A is independent of the C-terminal domain of the RNA polymerase alpha subunit.
In vitro transcription from the spoIIG promoter by Bacillus subtilis RNA polymerase reconstituted with wild-type alpha subunits and with C-terminal deletion mutants of the alpha subunit was equally stimulated by the response regulator Spo0A. Some differences in the structure of open complexes formed by RNA polymerase containing alpha subunit mutants were noted, although the wild-type and mutant...
متن کاملHigh- and low-threshold genes in the Spo0A regulon of Bacillus subtilis.
The master regulator for entry into sporulation in Bacillus subtilis is the response regulator Spo0A, which directly governs the expression of about 121 genes. Using cells in which the synthesis of Spo0A was under the control of an inducible promoter or in which production of the regulatory protein was impaired by a promoter mutation, we found that sporulation required a high (threshold) level ...
متن کاملSpo0A, the key transcriptional regulator for entrance into sporulation, is an inhibitor of DNA replication.
The transcription factor Spo0A is a master regulator for entry into sporulation in Bacillus subtilis and also regulates expression of the virulent B. subtilis phage phi29. Here, we describe a novel function for Spo0A, being an inhibitor of DNA replication of both, the phi29 genome and the B. subtilis chromosome. Binding of Spo0A near the phi29 DNA ends, constituting the two origins of replicati...
متن کاملIntegration of σB activity into the decision-making process of sporulation initiation in Bacillus subtilis.
Spo0A∼P is the master regulator of sporulation in Bacillus subtilis. Activity of Spo0A is regulated by a phosphorelay integrating multiple positive and negative signals by the action of kinases and phosphatases. The phosphatase Spo0E specifically inactivates the response regulator Spo0A∼P by dephosphorylation. We identified a σ(B)-type promoter adjacent to spo0E that is activated by the general...
متن کاملA combination of glycerol and manganese promotes biofilm formation in Bacillus subtilis via histidine kinase KinD signaling.
The spore-forming bacterium Bacillus subtilis forms matrix-enclosed biofilms in response to environmental cues that to date remain poorly defined. Biofilm formation depends on the synthesis of an extracellular matrix, which is indirectly regulated by the transcriptional regulator Spo0A. The activity of Spo0A depends on its phosphorylation state. The level of phosphorylated Spo0A (Spo0A~P) is co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 275 29 شماره
صفحات -
تاریخ انتشار 2000